High Performance Hydrogen Engine Applications

Application of Westport's H_2 HPDITM Fuel System to a Demonstration Truck

David Mumford, Stephen Ptucha, Scott Baker, Sandeep Munshi - Westport Fuel Systems Inc

Anders Palmkvist, Eric Olofsson – Scania Powertrain Pre-Development

We are Driving Cleaner Performance and Changing the Way the World Moves

7 global locations

Accessing Full suite of renewable and alternative fuels

countries, strong global footprint

100+ Global distributors worldwide

1,400+ Patents & Applications Robust patent portfolio

We design, engineer & manufacture gaseous fuel systems & components to enable cleaner, affordable transportation

GHG Reduction: The Role for H₂ ICEs

Optimum Duty Cycle Sweet Spot Multiple solutions for decarbonizing transportation: CNG/RNG, RD, H₂ ICE and Fuel Cell 48,000 • BEVs **Other Hybrids** • FCEVs 43,000 Long Haul: >70% • H₂ ICEs of HDV CO₂ • Hybrids NACFE Study: Freight • BEVs & hybrids - short haul Payload (lb.) • FCEVs & H₂ ICEs - long haul **Battery Electric** 250 650 Range (mi.) NACFE https://nacfe.org/research/electric-trucks/hydrogen/

NG / H₂ ICE Technologies

	Spark Ignited	Compression lgnition
How it works	 Fuel & air pre-mixed at low pressure Dedicated natural gas (100%) Ignition from spark plug Reduced compression ratio to avoid knock Simple 3-way catalyst Otto cycle (Stoichiometric) Power / torque / efficiency typically lower than base diesel engine 	 Direct injection of high pressure gas into combustion chamber Same base diesel engine can be used equipped with Westport's HPDI fuel system Compression Ignition from diesel pilot Same piston / compression ratio as diesel to retain high efficiency SCR & DPF (same as diesel) Diesel cycle - high substitution (~94% on typical road cycle) Power / torque / efficiency can exceed base diesel engine on Hydrogen

An Overview of Westport's HPDI[™] Fuel System

- Westport's HPDI[™] fuel system was conceptualized ~30 years ago with the goal of creating a more efficient natural gas engine.
- The "heart" of the system is a **unique fuel injector** which features a small pilot injection and a larger primary injection of the main fuel initially natural gas.
- The rest of the system falls broadly into two categories:
 - Fuel conditioning accurate control of the fuel
 - **Fuel supply** storage and supply of the appropriate fuel
- Two important takeaways:
 - The base diesel engine remains the same just switch out the fuel system
 - While Westport's HPDI fuel system was first developed with natural gas, the system allows a number of primary fuels to combust on the Diesel cycle

H₂ HPDI Combustion Overview

- The following results will focus on the initial calibration of Scania's state-of-the-art 13-litre CBE1 platform
 - Commercially available HPDI fuel system hardware was used for the initial calibration and demonstration of the H2 HPDI fuel system
- In parallel, hydrogen work continues on several other HPDI fuel system-equipped engine platforms – both Single and Multi-Cylinder.

HPDI Fuel Injector

H₂ Combustion on Scania CBE1 Engine

• BTE on torque curve of ~47-49%

• Peak BTE at 51.5%

- Engine-out NOx levels calibrated to ~6-12 g/kW.h to reflect EATs strategy
- Note: EGR can be used to reduce NOx further to ~3g/kW.hr
- Pilot quantities as low as 2-3mg have been tested, equating to near-zero CO₂ emissions

Minimal H₂ Slip

- H₂ combustion is almost fully complete
- η_{Combustion(H2)} is
 > 99.97% at the measured A-speed points
- No measurable slip infers a low risk of H₂ interaction with combustion chamber

Next Generation Fuel System Architecture (LNG Shown)

H₂ Fuel System: Off-Engine Approach

- Target for onboard fuel is 80kg – equates to ~2050litres of storage
 - Note: H₂ does not follow ideal gas law at higher pressures: 40% overestimate for ideal gas calculation
- Range without compressor is less than 600km

H₂ Smart Tank System

- Compressor required for ranges greater than 500km
- Smart Tank strategy evolved to maximize efficiency and minimize compressor flow
 - Able to reduce size, weight and power requirement.

Smart Tank Simulation Results (Södertälje - Norrköping route)

Full power available throughout operating range

General Simulation Results

Routes	Load (Tonnes)	Predicted H ₂ Consumption (kg/100km)	Average Speed (km/h)	Range with 80kg of H ₂	Tonnes-Km with 80 kg of H ₂
Södertälje – Norrköping Highway, moderately hilly	20	7.4	84	970	19,400
München, Trucker magazine testrunde Highway and rural, moderately hilly	40	11.3	85	590	23,600
Koblenz - Trier Highway, hilly and Scandinavian vehicle load	60	16.3	81	370	22,200

- A typical truck cycle will allow approximately 800-km of range.
- Cycles which require significant power (i.e., high loads or steep climbs) will clearly impact total range for fixed fuel storage.

H₂ Demonstration Trucks

- Westport has built two H2 HPDI demonstration trucks
 - Both trucks are converted from commercially available NG European models
 - Truck #1 is US-based
 - Truck #2 is European based

 Onboard storage is currently 16kg in a four-tank array with no compressor

H₂ Demonstration Trucks – Challenges & Next Steps

- Challenges:
 - Permitting
 - Fueling
- Next steps:
 - Increase fuel storage:
 - 80kg of fuel with no compressor will allow up to ~600km range* with Smart Tank strategies
 - Add compressor:
 - 80kg of fuel w/ compressor will allow up to ~900km range*

* Cycle/load dependent

Summary

- Westport's HPDI fuel system can be used with the same base diesel engine same engine architecture for Biomethane or Hydrogen.
- Interest in Westport's H₂ HPDI fuel system is growing from OEMs, with multiple development projects recently announced and underway.
- The SCANIA CBE1 engine equipped with Westport's H₂ HPDI fuel system reached a peak BTE of 51.5%.
- H₂ HPDI fuel system equipped engines have demonstrated **near-zero CO₂** emissions.
- The next generation HPDI fuel system will provide improved fueling accuracy, reduced emissions, and higher performance capability while meeting the new EU VII regulations.
- The Smart Tank off-engine system is predicted to allow up to ~900km range with 80kg of H₂ storage and a small compressor.
- Demonstration vehicles with H₂ HPDI fuel system equipped engines are running in both Europe and the US.

Thank you

