Westport HPDI [™]: an efficient and affordable path for decarbonization

Ulf Lundqvist, Director Business Development - Westport Fuel SystemEric Olofsson, Senior Technical Advisor - ScaniaDEKRA Zukunftskongress
Nutzfahrzeuge 2023, Berlin

We're Changing the Way the World Moves

We design, engineer & manufacture gaseous fuel systems & components to enable cleaner, affordable transportation

Electricity Map

Electricity carbon footprint last 12 months

DEKRA Zukunftskongress Nutzfahrzeuge 2023, Berlin

Status of transition towards electricity with low CO2 footprint

Green Electricity Production

DEKRA Zukunftskongress Nutzfahrzeuge 2023, Berlin

Green Electricity Production

DEKRA Zukunftskongress Nutzfahrzeuge 2023, Berlin

Origin of electricity in the last 24 hours

. det hourly historical, live, and forecast data with Electricity Maps API

Green Electricity Production and the challenge with storage and transportation

The challenge with a Battery Electrical Vehicle is that electricity needs to be produced at the same **time** as the battery is charged and preferable **nearby** to avoid transition losses.

H2 can be produced when electricity is **cheap** and as well at **distance** from the tank station. Transporting energy in H2 pipeline is 7-20 times cheaper than that via electrical grid.

DEKRA Zukunftskongress Nutzfahrzeuge 2023, Berlin

BEV vs. H2 Vehicle – Energy efficiency

DEKRA Zukunftskongress Nutzfahrzeuge 2023, Berlin

BEV vs. H2 Vehicle – Cost comparison

DEKRA Zukunftskongress Nutzfahrzeuge 2023, Berlin

Looking to the Future – A Flexible System

Engine platform commonality

One of the beauties with the HPDI technology is the great commonality with engine suitable for other fuels

Item	Diesel	LNG HPDI	CNG HPDI	H2 HPDI	LNG/CNG SI	H2 SI
Base engine	Baseline	->	->	->	->	Displacement increse
Cylinderhead	Baseline	Injector fit	Injector fit	Injector fit	Sparkplug cooling	Access for DI
Piston	Baseline	->	->	->	New ring pack	New ring pack
Piston bowl	Baseline	->	->	->	New	New
Camshaft	Baseline	->	->	->	New?	New?
Charging system	Baseline	->	->	->	New	New (2 stage)
Exhaust manifold	Baseline	->	->	->	New?	->
Aftertreatment system	Baseline	->	->	->	New	Stoich => New
Fuel storage system	Baseline	LNG - cryopump	CNG - Compressor	700 bar (LH2)	LNG or CNG	700 bar (LH2)

H2 Combustion on H2 HPDI 13L Scania Engine

DEKRA Zukunftskongress Nutzfahrzeuge 2023, Berlin

Latest results above 600 hp

- Latest results 32 bar BMEP (3200 Nm)
- Peak BTE at 51.5%
- Engine-out NOx levels equates to ~6-12 g/kWh during initial. In line with current diesel EATS strategy

SCANIA

- Note: cooled EGR can efficiently reduce NOx further to ~3g/kWh
- Pilot quantities as low as 2-3mg have been tested, equating to ZEV levels for CO₂ emissions

Why do H2 HPDI enable higher power & Torque

Torque and power on a diesel engine is limited by max cylinder pressure and exhaust temperature.

- » For a given airflow thru the engine H2 can release 24% more energy than combustion of diesel. Therefore the H2 HPDI engine needs less boost pressure lowering max cylinder pressure.
- The compressed and cold H2 injected at TDC gives 50 100 K lower exhaust temperature. H2 has
 2,5 times higher cooling effect than diesel including the evaporation effect.

 $O_2 + 2H_2 = 2H_2O$ => 3.5 MJ/kg air

 $O_2 + 0.41CH_{1.8} = 0.41CO_2 + 0.37H_2O => 2.9 MJ/kg Air$

Molar expansion Lambda 2

	Added Mole ratio	Combustion molar expansion	Final mole / before injection mole
H2	1,21	0,913	1,11
C7H16	1,01	1,028	1,038

Why do H2 HPDI enable higher efficiency

4. As the H2 is injected a low pressure compared to diesel less turbulence is induced and therefore lower heat flux thru the combustion chamber walls.

H2 HPDI transient response

The H2 HPDI has roughly 40% faster torque response compared to base diesel engine.

- For a given airflow thru the engine H2 can release more energy than combustion of diesel. Therefore the H2 HPDI engine has higher natural aspirated torque.
- » H2 HPDI generates no soot. Soot limiter is therefore not required and Lambda close to 1 can be utilized during transient for a limited number of cycles before thermal load becomes to high.

H2 HPDI transient response

What is the maximum torque in the 1^{st} cycle – after a full torque request from motoring or idle – for different fuels and combustion principles?

Diesel	AFR _{stoich} = 14.5	<u>LHV = 42.5N</u>	IJ/kg	<u>BTE = 48%</u>
Trapped amount of air in	the cylinder @ IVC;	2.3g	based on 101	.3kPa and 325K
Minimum λ due to smoke	reasons;	1.3		
=> Maximum added fuel i	n 1 st cycle;	2.3 / (14.5 · :	1.3) = 122mg (5.19kJ)
=> Maximum torque in 1 st	^t cycle;	1.190Nm		

<u>H₂ HPDI</u>	AFR _{stoich} = 34.3	<u>LHV = 120N</u>	IJ/kg	<u>BTE = 48%</u>
Trapped amount of air in	the cylinder @ IVC;	2.3g	based on 10	1.3kPa and 325K
Minimum λ;		1.0*		
=> Maximum added fuel i	n 1 st cycle;	2.3 / 34.3 =	67.1mg (8.05	(Lx
=> Maximum torque in 1 ^s	^t cycle;	1.840Nm		

H ₂ Homogenous SI	AFR _{stoich} = 34.3	<u>LHV = 120N</u>	/J/kg	<u>BTE = 43%</u>
Trapped amount of air in	the cylinder @ IVC;	1.6g	based on 70)kPa** and 325K
Minimum λ due to EONO,	and preignition;	1.9		
=> Maximum added fuel i	n 1st cycle;	1.6 / (34.3 ·	1.9) = 24.6m	g (2.95kJ)
=> Maximum torque in 1 ^s	^t cycle;	605Nm		

Prototype H2 HPDI Trucks are already running on the road

H₂ Demonstration Trucks – Next Steps

- With increased fuel storage:
 - 80kg of fuel enables a range of 900km range*

Simulated Highway / Moderately Hilly Route (20-tonne load)

DEKRA Zukunftskongress Nutzfahrzeuge 2023, Berlin

HPDI: Cost-effective

HPDI is the most cost-effective way to reduce CO₂ in long-haul trucking and other high-load, long-haul applications.

HPDI: LNG

- · Same torque, efficiency, and reliability as diesel engines
- 20% CO₂ reduction tailpipe
- More than 100% CO₂ reduction with bio-LNG
- No change to vehicle or engine architecture

H₂ HPDI

- 20% more power, 15% more torque
- ZEV complient according to latest EU proposal
- Lowest cost to CO₂ compliance
- Preserve existing engine manufacturing

Contact Info

Thank you!

Ulf Lundqvist Westport Fuel Systems +46 766 47 8533 Ulf.Lundqvist@wfsinc.com

Eric Olofsson

Scania

+46 707 982 2576

Eric.Olofsson@Scania.com